
Oizom PM2.5

Contents

Device Information	2
Equations Used	2
Comparison Plots	3

Device Information

The calibration(s) were completed on:

- 29/07/21
- no second calibration

Equations Used

$$cRMSE(R, L) = \sqrt{mean(L_i - R_i - \overline{L} + \overline{R})^2}$$

- R_i = reference measurement at time i for measurements 1 to n
- $L_i = LCS$ (low cost sensor) measurement at time i for measurements 1 to n
- \overline{L} = mean LCS measurement
- \overline{R} = mean reference measurement

$$RMSE(R, L) = \sqrt{mean(R_i - L_i)^2}$$

- R_i = reference measurement at time i for measurements 1 to n
- $L_i = LCS$ (low cost sensor) measurement at time i for measurements 1 to n
- n = number of measurements

$$Bias(R, L) = |\overline{L} - \overline{R}|$$

- \overline{L} = mean LCS measurement
- \overline{R} = mean reference measurement

Comparison Plots

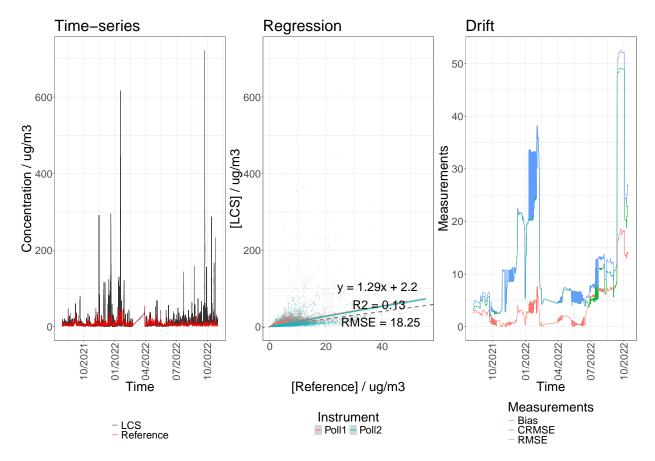


Figure 1: Quantiative evaluation. Column 1: Time-series plot of the LCS measurements (black line) vs the reference measurements (red line). Column 2: Regression plot against reference data. The grey dashed line represents y=x. Column 3: Measure of drift plot (blue line indicates root mean squared error, the red line represents the mean bias and the green line shows the centered root mean squared error).